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MAXIMUM LIKELIHOOD ESTIMATION FOR LIFE DISTRIBUTIONS

WITH COMPETING FAILURE MODES

by Steven M. Sidik

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

We consider systems or items which are placed on test at time zero, func-

tion for a period, and die at some random time. Failure may be due to one of

several causes or modes. A model for this situation is that at birth nature

chooses a life time Yi from a population of times until death from mode L The

time at which the item fails is min(Y i) and is the only life actually observed. The

parameters of the life distributions may depend upon the levels of various stress

variables the item is subject to. Maximum likelihood estimation methods are

discussed in general. Specific methods are discussed for the smallest extreme-

value distributions of life. Monte-Carlo results indicate the methods to be

W	 promising. Under appropriate conditions, the location parameters are nearly

unbiased, the scale parameter is slightly biased, and the asymptotic covariances

are rapidly approached.

1. 0 INTRODUCTION

Suppose an item or system (a person, battery, computers, etc.) is brought

to life at time zero, functions for a period of time, and then fails. We also

suppose there are a finite number of possible causes (or modes) of failure

labeled 1, 2, . , . , M. For example, people die of cancer, accident, heart

_	 attack, etc. A simplified conceptual model for actual item lifetime is that at

birth nature chooses a failure time Y  from a population of failure times due

'	 to mode m. (The Y  may or may not be independent.) The observed life of

the item is then min(Yn1) and it is known only that all the other lifetimes exceeded

this value. Such a process is a form of progressive censoring. Cox [ 1] appears

to have been the fllr k • .o iorir:ul p te this competing risk failure time model and
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applied it specifically in the instance of independent exponentially distributed

failure times for two possible modes of failure.

Berman and Patell [4) extended the model to several independent competing

risks, developed the maximum likelihood estimators for exponential and Weibull

distributions of failure, and derived expressions for the asymptotic covariance

matrices of the estimators. McCool 19i considers certain confidence interval

techniques in this situation when life has a Weibull distribution. Moeschberger f 10)

extended the model to the case of dependent or correlated failure times. Other

closely related developments are by Sampford [ 13] , Moeschberger and David [11)

and H oel (5).

For any of the failure modes it may very well be that the population of failure

times from which the item life is drawn may depend upon the level of various

stress variables the item is subjected to during its life. For example, if we were

to assume human life until death by cancer to follow an extreme value distribution

with location parameter µ and scale parameter v, then µ = µ(x1 , . . , xn) may

be a function of exposure to pollution (x 1), amount smoked per day (x,), etc.

McCool [8] considers estimation, confidence interval, and multiple comparison

methods when the life distribution is Weibull, failure modes act independently,

and n observations are obtained from each population. (He essentially provides

an ANOVA generalization.) Nelson [12] sketched a general approach to maximum

likelihood estimation in the extension of the multiple regression situation. He

applies the method in the case of a single stress variable (temperature), indepen-

dent and lognormally distributed lifetimes and a number of failures by each mode

for each level of the stress variable.

In this report we first present the general model for the competing failure

modes assuming the location parameters for each cnode are expressible as linear

functions of the stress variables and the failure modes act independently. We

then present the general form of the likelihood function and the likelihood equations

are derived for the extreme value distributions. Solving these equations using

nonlinear least squares techniques provides an estimate of the asymptotic co-

'
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variance matrix of the estimators. Several Monte- Carlo experiments were per-

formed. The results of these indicate that, under appropriate conditions, the

estimators approach unbiasedness and their asymptotic covariances at reasonably

small sample sizes.

2.0 THE GENERAL MODEL

Assume that an experiment is performed in which I items are life tested

at varying combinations of J stress variables and that the design is specified

by the design matrix

z 	 z1J

Z =	 (2-1)

	

z11	 zIJ

The response observed for each item is a lifetime y i (i = 1, A and the mode by

which the item failed, mi . The number of modes by which the item might fail

is denoted M.

We assume that for observation i and mode m the cumulative distribution

function of time until failure is defined by

Fim) LY• µim) , v(m)J
and the density function by

	

fim) [Y; Pi 	v(M]

where pi(m) is a location parameter and v(m) is a scale parameter. We thus

assume that a(m) is constant for all observations. We also assume that the

location parameter is a function of the stress variables, in particular

P(M) _ Q (m) zii + .
	 +P(m)  z iJ	 (2 -2)

In general we will not necessarily have

	

a(m) = a(Mt)	 for m ^ m'	 (2-3)

E.
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nor

P (m) = Q(m')
	

for m m , 	(24)
	 Xd

That is, we do not a priori assume any of the failure modes to have parameter

values in common.

We further assume that lifetimes Y( m) are drawn at random and Indepen-

dently from F (IM) and that the observed lifetime is the smallest of these, min

(yi) . This latter assumption implies an item can fail by at most one mode.

Nelson (12] 'indicates a situation. in which' items may fail by one modg, be repaired,

and then fail again by another mode. It is also possible that testing of an item

may be terminated before it falls. These situations may be easily included in

the model but will not be considered in this report.

Clearly, the profusion of arguments, subscripts and superscripts will be

quite unwieldly. We will thus delete them whenever context clearly indicates

the appropriate values.

3.0 THE LIKELIHOOD FUNCTION

We first consider the likelihood function corresponding to the i th observa-

tion. If that observation is a failure by mode m, then the likelihood is

p i = ^1 - Fit) I	 I1 - F(m-1)I If 
imJ t_ - Flm+l)I	

1 - F(

-e

fim) = ; ") 1y;M)Vi ^ Q(m)
	

(3-2)

1 - Fin) = 1 - Fin) lyI; µ n) , o(nj

= PrrYin) > J
	

(3-3)

is, we multiply the density function corresponding to the mode of failure

e probability the item did not fail by any of the other modes. The likelihood

simple product due to the independence assumption. If testing is terminated
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without an observed failure, the likelihood is given by

M
I I =TTEI - ri

J

my	 (3-,4)
1 

The overall likelihood is then the product of the likelihood for each observation

and given by

L = TTQ i	 (3-5)

Taking natural logs of eq. (3-5)

I-7In L = L In 
f1mi)	

1 - Fim) 	(3.6)
i= 1 	 momi

is obtained where

In L = In L[Pii) , , PJi) 	Pi	 . . , P J2),

Ply , . . . , P JM) , v(i) ,	 .	 .	 .	 ► 	 o(M) ^ Y1 +	 .	 .	 .	
+ YI^

(3-7)

To obtain maximum likelihood estimators, the standard method (assuming it

works) is to solve the system of JM (nonlinear) equations

8 In L = 0 (m = 1, M)
a P(M)

8 In L = 0 (m = 1, M) (3-8)

80 (m)
J

8 In L = 0	 (m = 1, M)

8 a(m)

If the different failure modes have no parameters in common, as will generally

be true by eqs. (2-3) and (2-4), this system of JM equations splits into M separate

systems of J equations which may be independently solved. In particular, the
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mth system reduces to

0 =	 a	 In f(m) +	 8	 In[11 - F(m)
8 ^ Jm)	

i
mode to	 other mode
failures	 failures

—^ (3- 9)

0 = \

	
8	 In f(m) +	 e In 

C - 
F(m)

L^/ 8 Q ^) i	 ^../ ^ R Jm) L, i

mode to	 other mode

failures	 failures

0 =	 8 m In f(m) +	 8 m in Cl - Fim)
8v( )	 8Q( )

mode to	 other mode
failures	 failures

4.0 WEIBULL AND EXTREME-VALUE (SMALLEST) DISTRIBUTIONS

Two commonly assumed life distributions are the Weibull and the smallest-

extreme value distributions.

The cumulative distribution function for the Weibull distribution is given by

F(t;a,g) = 1 - exp[- (t/a')p1	 (4T1)

where

a	 "scale'?

p "shape" parameter

It is easily verified that if T follows this Weibull distribution, then the

application of the transformation Y = In T yields the smallest extreme value

distribution with cumulative distribution function

F (y; µ. v) = 1 - exp ( exp[ (y - u) /Q}

k(

with
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p - in (n)	 (4-2)

It is thus sufficient to consider this extreme value distribution. In particular, if

we apply this distribution to the model previously developed we assume that for

mode m failure and the i th observation the density function for life is

	

f(m)1y; P1
(m)

+Q (m)	 eXP 
Y 
-am)exp Y-Pim)(4-3) 

Q(m)	 Q(m)	 Q(m)

and the distribution function is

Y - µ(m)
Fim) IV; uim) . c(m) = 1 - exp -exp	 i	 (4-4)

v(m)

where

pim) - e lm) zil + .	 +RJ ) ziJ	 (4-5)

Hence, we obtain the partial derivatives required for the likelihood equations as

(deleting m superscript)

a- 1n 	 Y - µi + y - µi exp Y - µi
8 o	 v	

v2	 v2	
v

	8 In fi 	 I +L exp Y - µi

	

a pj	v	 v	 o

(4-6)

8 In (1 - F i) Y - µi
_	 exp

a v	 Q2	 v

aln(1-Fi = ^) z,

	

	 y-µ
expi

a Q j	 or	 v

Substituting these into eqs. (.1-9) we obtain the likelihood equations for any

specified mode as
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T--j 
zij -	 zijexp y-^--µi =0	 U=1,J)

Q

	

failed by	 all
mode	 failures

(yi - µi +a) - 1	 (yi - pi) exp yi - Pi\ _ t;

a2	 v2	
v

oiled by	 all

	

mode	 failures

These nonlinear equations have no closed- form solution and need to be 1; Aved by

some iterative method.

It is well-known that, under appropriate regularity conditions, maximum

likelihood estimators (MLE) are consistent and asymptotically normally distributed.

It is also known for the Weibull and extreme value distributions that the minimal

sufficient statistics are the trivial ones consisting of the order statistics. It thus

becomes of considerable interest to determine how rapidly the MLE's approach

their asymptotic unbiasedness and covariance structure. The asymptotic co-

variance structure and the Cramer- Rao lower bound are defined by the inverse

of the Fisher information matrix (Zacks ( 14, p. 184) and Kendall and Stuart

17, p. 28)). .

For the model considered in this report the Fisher information matrix is

the block-diagonal matrix

I (1)	 0	 . . .	 0
0	 I(2)

(4-8)

0 0	 1 6

»

where
k

f

4

F

4
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8 2 In L

I

I 82 In L-lm), 2 i

I
8 A 1m) 8 v(m)

.

I
a 2 In L	 I 8 2 In L

(4-9)

8 
(Q (m^ 2	 1

8
J	 I

R (m) 8 
a(m)

J

82 In L 82 In L	 I
82 In L

3 
P(M) `i 

v(m)1 8	 (m) 8 Q(m)
^ J 8 o(m) 2

l	 l

9
T

k

ng section it will be shown how an approximation to this expectation

occurs naturally when solving the likelihood equations via nonlinear least squares.

5.0 SOLUTION BY LEAST SQUARES

Using the general nonlinear regression model

W = h(1; , B) + E	 (5-1)

where t T = Q 1,	 t J) is a vector of independe :it variables, E T = (E1'
E n) is a vector of random errors, BT = (01 ,	 . , 8 p) is a vector of parameters

to estimate, and the maxtrix of observed data is

Wl 	 11	 1J

.	 (5-2)

Wn ^ nl	 nJ

•

	

	 Approximating the function h as its truncated Taylor series gives (Draper

and Smith 1 2. Ch..101 )

I

8 hQ, © )
h Q, 6) = h (4, 00) + D(0k - ©ko)

8 4k 
°	 (5-3)
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Also, let

00 = prior guess for 0

y = correction vector

ho = h Q , 00)

yk = ©k - 0ko

and X be the matrix of partial derivatives of h evaluated at

D h(4 u) b) 1
u, k)

0 0k

0

With this notation eq. (5-1) can be approximated as

W- ho= Xy +E

which has (least squares) solution

Y =( - 00) = (XT)o XT (
W - ho)

Thus y is the estimated correction vector. This method ma:

solution of tt,e likelihood equations if the W's, 0's, and h of

defined as

W1 = 0; 0 1 = Q 1 ; hQ 1 , 0) = a In L

80I

I P- L'

Wi = 0; U j = !>j ; h (t .I , U) _ D In L

a 0J

Wj+1 - 0; U J+I = v; hQj+I' 0) 
= e In 1.

 i) a

With this notation we see that the pa rtial de rivatives of h(f , U) reyui red in

eqs. (5-3) and (5-5) are actually the second partial derivatives of the log-

likelihood function required in the expectation of eq. (4-9). 'Thus when the X

matrix is evaluated one has an estimate of the covartance matrix of the param-
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eters. When used together with Monte-Carlo simulation experiments, subsii-
(

tution of the known parameters into the second derivatives and the observed

sample lifetimes for each trial may be done. These results are then averaged
z,

t
to obtain an estimate of the expectation of eq. (4-9). The application of least

squares methods to Maximum Likelihood estimation has been treated by Jeanrich

and Moore [6].

6.0 SIMULATION EXPERIMENTS

Three series of sampling experiments were performed. In each of these ex-

periments only two failure modes were considered. The first experiment in-

vesUgates the effects of censoring and sample size when the two modes have con-

stant location parameters and identical scale parameters. The second experi-

ment investigates the effects of various experiment designs in the case where

mode 1 location parameter ! a linear function of a single stress parameter and

mode 2 location parameter is constant. Both modes had identical scale parameters.

The third experiment investigates the effects of ill-conditioning on the estimators.

For each experiment the true values of the parameters were known. Uni-

formly distributed random variables were generated and observations for each

mode were obtained by inverting the cumulative distribution functions. For each

observation one lifetime for each mode was generated and the observed lifetime

chosen as the smaller of the two. Only estimates of mode 1 parameters were ob-

tained and recorded. The starting values for the iterative solutions were the true

values used to generate the observations.

For each simulation, several pieces of information were obtained. The

means, mean squared errors, and covariance matrix of the estimates were re-

corded. The average amount of censoring by mode 2 was recorded along with a

separate mean value of the estimates of the scale parameter for each amount

of censoring. Also the Fisher information matrix of eq. (4-9) was evaluated for

each sample and its mean value recorded. This was then inverted to obtain an

estimate of the asymptotic covariance matrix of the parameter estimates.

The goal of these experiments was to obtain information concerning the

means and variances of the parameter estimates and to investigate the approach
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to asymptotic behavior. Due to the iterative nature of the solutions required

some sample sizes were rather small in order to avoid excessive computer times.

The following three sections describe each of the experiments and the resrilts

obtained.

6.1 EXPERIMENT A

This series of simulationi^ investigates the performance of the MLE's for

two populations with identical scale parameters and location parameters of varying

separation. In particular the parameters chosen are

v (1) = v(2) = 0. i

,P} = 2.2

µ(2) = p(1) + A, A = (-0.1, 0, 0. 1, 0.3)

(These are highly skewed and distinctly non-normal distributions. Figure I, shows

one such extreme value density function and the normal density with the corres-

ponding moments.)

Sample sizes of n = 5, 10, and 20 were considered. :Jot all combinations

of A and n were investigated. : 'hose combinations investigated are given in

table I. There were 1000 simulations performed for each case. Any sample

which had less than two mode 1 failures was rejected and another sample chosen

in its place.

The resu:ts of these experiments are presented in table I. The first two

columns specify the combination of I and n. Column three indicates the pa-

ran.eter and column four the woan & the 1000 estimates for that simulation.

Column five presents the estimated standard deviation of the mean reported in

column four and is obtained by dividing the observed standard deviation of that

parameter by the square root of the number of simulations.

The major points are that the location parameter is slightly biased toward

lower values and that the scale parameter can be strongly biased. The bias in

the location parameter is worst for the smallest sample a1zes mud the most

censoring. The bias in the scale parameter is close to -l./n where n is the
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sample size. The bias in a could also depend upon A but this is not perfectly
s
g;?

	

	 clear. Figure 2 plots the means of a and of µ as a function of A for the three

sample sizes. Also included is a bar indicating plus and minus one standard

error of the mean. The bia- may decrease as A decreases.

Harter and Moore [3) report on similar experiments.. They were not con-

cerned with competing failure modes but ra "her with the case where the r1

smallest and/or r2 largest observations are censored. For this case they re-

port rapid approach of the estimators to their asymptotic properties (if censoring

is not severe) and that the scale parameter estimate is biased downward by a

factor of 1/m where m = n - r1 - r2 is the number of uncensored observations.

Similar results were found in the competing failure mode type of censoring.

The last four columns of table I provide the observed covariance matrices

of the estimates p (1) and a(1) and the corresponding estimate based upon asymp-

totic theory.

The observed covariance matrix was computed as

vr(ll = 1^^(1)  M uaj 2

	

LL JJ k	 i	 ^^

cov [(1), a(1) = 1 ^I u il) -M(µ1 ro(1) - M(a^	 (6-1)
	k 	 /!-

	

kD	 JJJ
where 

k = 1000 trials

•	 and

	

M C
(1^ = 1^µ(1)	

^`

	

1 k	 i

(6-2)

L(1J _ 1 
^Q(1)

M 

	

k	
i

i
F

k
'i.
G
R

r

G

e

i
s

a
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The estimate of the asymptotic covariance matrix was obtained as follows. Sup-

pose the sample size is n where y l , .

. . . , Yn are mode 2 failures. Then

m
8 2 In L - _ m 2	 (yi - µ)

0 0) 2	 Q2 a3 1=1

.1 Ym are mode 1 failures and Ym+1'

n
µ

	+ v
	

ex 
i
-01 ,1  10-11 ^Yi-µl2 +2(yi-µ)

U j

i=1

n

	

a2 In L _ - m +-0	 + 	 µ exp Yi - µ
8Q8µ	 Q2 02/	 Q	 Q

i= 1=1

n

	

82 In L _ _1	 eXp (Ti - µ

(8 µ) 2 	v2	 Cr

I=1

where the µ and v are the known values of µ(1) and v(1) used in generating

the observations. It is thus possible to estimate

(6-3)

a2 In L a2 In L

(9µ2 aµ Ea

E
Y

a2 In L a2 In L
a µaQ	 aa2

(6-4)

by obtaining the average of each expression in 6-3 over all the simulated samples.

It should be noted that for small 0 and n this approximation may be biased to an

unknown degree due to rejection of samples with insufficient mode 1 failures.

The covariances are estimated by calculating the inverse of this matrix.

Examination of table I shows that for A = 0.3 the asymptotic and observed

covariances are quite close for all n 1 s. For A = 0. 1 the diagonal elements are
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all quite close while the covariance is somewnat different for n = 5. Even for

0 = 0 there is good agreement except for the n = 5 case. For O = -0.1 it ap-

pears the asymptotically based approximation is a considerable underestimate.

The general conclusion is that if 0 ^! 0 the estimators approach the asymp-

totic covariance structure very rapidly. Large 0 implies little censoring by

mode 2. These results are in qualitative agreement with Harter and Moore [3].

6.2 EXPERIMENT B

This series of simulations is the simplest nontrivial situation in which the

location parameter of one of the modes is dependent upon a stress variable. The

models chosen for simulation are graphed in figure 3 and defined by

µ(1j = 2.2 + 0.2 z2

µ(2) = 2.5

Q(1) = v(2) = 0.1

The goal of the experiment was to investigate further the bias in the estimates

and the effect of different experiment designs with respect to z2 . In particular,

three different sample sizes were used (n = 7, 12, and 22). For each sample

size, three distributions of these observations with respect to z 2 were used.

For each, z 2 was restricted to the values 0, f1. One design concentrated all

the replication at z2 = 0, the second design spread the replication as evenly

as possible among the three points, and the third design spread the replication

evenly between the two extreme values. The results are based on 100 simulations

of each case.

Table II presents the means and the standard deviations of the means of

each parameter. For the n = 7 sample size it appears that 4 ) is biased

slightly toward lower values, (321) is apparently unbiased, and Q(1) is biased

to lower values. The amount of bias of v does not appear to depend upon the

design. The standard deviation of 9 2 decreases as the design places more

replication at the extremes of the range.
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Table III compares the observed covariance matrices, the estimated asymptotic

covariances, and the covariance matrix of the location parameters assuming naive 	 • k

normal theory. The observed and estimated asymptotic matrices were calculated

as in experiment A. The normal theory matrix is obtained by assuming that the

estimation process is equivalent to multiple linear regression with normally dis-

tributed error term and ignoring the fact of competing failure modes. That is,

the matrix is given by

(1.645) v (ZTZ)-1

where Z is the design matrix and 1.645 a2 is the variance of the smallest ex-

treme value distribution with scale parameter a. This describes the covariance

structure of the location parameters only. Because of the limited number of sim-

ulations, these results are only indicative of the true behavior and only cursory

mention of these results is made here.

For all cases, the observed and asymptotic covariances between al and 92

are near zero as in the normal situation. The covariances between v and both

are also small as in the normal case. Inspection shows the normalal and 92
approximation to be somewhat too large in general. The asymptotic approximation

appears to be closer for vol) but tending to under estimate v(3 2). In order to

provide more accurate comparisons, considerably more simulations should be

performed. The results obtained here indicate that the approach to asymptotic

covariance structure may be reasonably rapid.

6.3 EXPERIMENT C

This series of experiments was intended to examine what might be termed

estimability conditions. This is most easily described with reference to figure 4

where µ(l) = 91 + P2 z + R3 z2 are plotted. Five different combinations of the

#I s were used and are presented in table IV.and illustrated in figure 4. The scale

parameters in all cases are

a(l) = a(2) = 0.1

For each ninaulation the design consisted of n observations each at z =

(-2, -1, 0, 1, 2).



relatively clear that a second order polyno!ninal is required to fit the data. In a

more extreme situation such as with model E, however, there will be few if any

mode 1 failures at z = 1, z = 2. It will then be considerably more difficult to

determine if the model should be as in E or as in F. In essence, the censoring

caused by mode 2 failures makes estimation of all three P parameters difficult

much as if in the ordinary linear regression situation observations were not made

at z = 1, z = 2. That is, as if we were faced with ill-conditioned normal equations.

Tables IV and V(a) to (d) present the results of 100 simulations for various

combinations of model and sample size. Table IV presents the means of the pa-

rameter estimates while table V(a) to (d) presents the observed covariance

matrices of the estimates, the estimated asymptotic covariance matrices and naive

normal theory approximation.

Considering first the means of the parameter estimates it is seen that v(1)

is biased low for each sample size and the amount of bias appears to depend only

upon the sample size, not upon the amount of censoring.

The locus of & s location parameter estimates is more biased as there is

more censoring by mode 2 failures as is evident in figure 5(a) to (e) . In these

figures a solid line indic rtes the true value of µ (1) . The graphs of the mean

values of µ(1) tLre indicated with dashed lines. For model A where there is

minimal censoring, there is negligible bias. For model C where significant cen-

soring begins to occur there is a minor but noticeable upward bias where the cen-

soring occurs and similar bias downward where negligible censoring occurs. For

model E where almost all of the failures for positive z are mode 2 failures,

there is considerable upward bias at the right end of the function but minimal bias

at the left end. These results are quite reasonable of course. Where failures

are not observed, the maximum likelihood procedure pushes the location param-

eter toward as large a value as consistent with the data where there are failures

observed.

For each simulation series, the observed covariances, asymptotic co-

variances, and normal theory covariances of the scale parameters are given in
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table V(a) to (d) and certain plots of the results given in figures 6 to 8.

Table V(a) presents the results for n = 1 and cases A and B only since it

was difficult to get batch simulation runs to complete without numerical difficulties

in the other cases. Tables V(b) to (d) present all the results for n = 2, 4, and 8.

The naive normal theory approximation would predict that 02 and v are mutually

independent Pnd independent of R1 and (3 3 . Examination of the tables indicates

that for case A (with minimal censoring) the corresponding observed and asymp-

totic covariances are indeed relatively small. The covariances become larger

as the degree of censoring for positive z values increases. Normal theory

and intuition also indicate significant covariance between pi 1 and (3 3 . This is

also borne out qualitatively.

Since one picture is worth a thousand words, plots of the variances of ^1

are indicated in figure 6, variances of R2 in figure 7 and variances of 03 in

figure 8. In each, the horizontal scale is n, the number of replications of the

design, and the vertical scale is the variance of the estimator. These figures

indicate that when censoring is infrequent (model A) both the normal theory and

asymptotic variances behave qualitatively and quantitatively similar to the ob-

served variances for even the smallest sample sizes. As the censoring becomes

more severe the observed variances are much higher than either normal theory

or asymptotic variances for small n while they become comparable for larger n.

It is easy to understand why the normal theory variance is an underestimate.

It is due to the (effective) inestimability for many samples because many observa-

tions for positive z are mode 2 failures. Hence slope and curvature are difficult

to define. The naive normal theory approximation ignores this. It is not clear

why the asymptotic estimate should tend to be small.

These results indicate that the approach to asymptotic theo; ,, is rapid if the

model is "estimable" but slow otherwise. They also indicate that rapid approach

to normal theory approximation is quite possible. Much further simulation is

required to substantiate these conjectures.



Previous studies have concentrated on the competing failure mode estimation

problem where many samples have been obtained from one single population or at 	 i
most where the location parameter depends on one stress variable and repeated

observations are made at each level of the stress variable. This paper is oriented

toward generalizing the multiple linear regression situation where more than one

stress variable exists and not many replications are performed at each combination

of stress variables.

This study has indicated the maximum likelihood approach to be feasible.

For moderate sample sizes the estimators approach the asymptotic covariance

structure and asymptotic unbiasedness under certain conditions. When estimating

parameters for mode i when most of the failures are by mode i the location pa-

rameters are nearly unbiased while the scale parameter can be substantially biased

for small sample sizes. Both normal theory and asymptotic theory covariance

structures appear to hold for small samples. More extensive simulations are re-

quired to concretely verify and quantify these results.

In the situation where there is substantial censoring of mode i failures by

other modes, care must be taken to insure that the proposed model is estimable.

Otherwise serious biasing and much increased covariances result.

Based on the results obtained, the following procedure is recommended.

(1)Perform an ordinary multiple linear regression analysis of all observed

lifetimes regardless of mode of failure. This will provide rough estimates of the

terms needed in the response function and an initial guess for the scale parameters.

(2) Fit the model obtained from all the data to each mode separately using as

observations only the failures by that mode. This will indicate whether or not all

terms are estimable. If there is serious ill-conditioning, some terms will have

to be dropped to provide a model for which all terms are estimable. The ordinary

least squares regression analysis of this model will then provide initial estimates

of the location parameter values and the scale parameter.

(3) Refine these estimates by obtaining the maximum likelihood estimators.

W
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This report has not addressed the questions of hypothesis testing and confi-

dence limits, If the approach to asymptotic behavior is indeed as rapid as indi-

cated here, Wen perhaps teats and confidence limits based on the estimate of

the Fisher Information matrix provided by the sample will perform reasonably.

Additional simulation studies to investigate this should prove valuable.
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TABLE L - EM MARY OF RESULTS OF EMULATION EXPERIMENT A

[Results are based an 1000 simulations. Standard deviation of mean to
estimated as observed standard deviation divided by VI-000.

0 a Parameter Moo of Standard Observed Asymptotic
estimates deviatos covariance covariance

of mean (x103) (x103)

-0.1 to 0 2.205 0.0021 4.31 2.73
v .099 .0012 1.81 1.33 1.00 1.13

0 5 µ 2.177 0.0019 3.45 4.39
v .067 .0016 1.02 2.70 .96 2.29

10 µ 2.194 0.0015 2.22 2.20
o .092 .0011 .47 1.25 .43 1.2720 µ 2.200 0.0012 1.36 1.04
CL .097 .0008 .31 0.71 .16 0.60

0.1 5 µ 2.191 0.0016 2.65 2.72
v .064 .0013 .13 1.79 1.78

10 µ 2.195 0.0012 1.49 JI.38
.093 .0010 .03 0.94 0.8410 µ 2.195 0.0012 1.54 (a)

v .093 .0009 .08 0.89 (a) (a)

20 0 2.196 0.0009 0.76 0.69
o .096 .0006 -.03 0.41 -.09 0.43

.3 6 µ 2.194 0.0615 2.22 2.26
v .082 .0011 -.33 1.21 -.51 1.40

10 µ 2.196 0.0011 1.16 1.14
v 092 .0008 -.23 0.62 -.23 0.64

10 µ 2.195 0.0011 1.19 (a)
v +	 .092 .0008 -.15 .65 (a) (a)

L µ 2.196 0.0008 0.66 0.57
o .096 .0006 -.10 .32 -.12 .32

(a) Not recorded.

Li



TABLIf U. - MV148 AND ESTIMATED STANDARD DEVIATIONS

OF MEANS OF PARAMETER ESTIMATE 6IN SIMULATION

EXPERIMENT B

(Results are based on 100 simulations for each case.)

Design Moan Standard deviation mean

(1.8,1) (2.3, 2) (3.1.3) (1.5,1) (2, 3, 2) (3.1.3)

a-? O l 2.183 2.181 2.191 0.0040 0.0039 0.0047
02 .203 .193 .208 .0097 .0052 .0048
o .089 .081 .083 .0029 .0030 .0034

Deslp Mean Standard deviation mean

(1,10,1) (4, 4, 4) (5.2,5) (1,10,1) (4, 4, 4) 1,5.2, 5)

n o 12 O l 2.192 2.198 2.197 0.0030 0.0031 0.0031
02 .212 .199 .197 .0114 .0048 .0038
o .089 .099 1	 .093 .0022 .0025 .0028

Design Mean Standard deviation mean

(1, 20,1) (7, 9.7) (10, 2,10) (1, 20,1) (7, 8, 7) (10, 2,10)

n-22 0 1 2.200 2.200 2.199 0.0022 0.0022 0.0021
02 .210 .202 .198 .0101 .0028 .0028
a .095 .OP2 .093 .0018 .001.7 .0019



TABLE M. - OBSERVED, ASYMPTOTIC, AND NORMAL THEORY COVARIANCES

OBTAINED FROM EXPERIMENT B

(Results are based on 100 simulations of each ease.(

Dedp Observed oovariance Asymptotic covariance Normal theory
ddA 0d03) covariance (403 ►

1.8,1 0 1 1.68 1.71 2.35 8
0 2 -.34 9.50 .29 5.76 .00 8.23
o -.36 -.64 0.81 -.17 .29 0.93

2.3,2 01 1.52 1.74 2.35

02 -.19 2.71 .28 3.06 .00 4.11.
o -.05 -.13 0.68 -.16 .27 0.93

3,1.3 pl 2.22 1.71 2.35

02 .45 2.34 .13 1.68 .00 2.74
or -.25 .23 1.14 -.34 .02 0.92

1,10,1 p1 0.62 0.97 1.37
p2 .08 13.07 .15 7.04 .00 6.23
o -.11 -.38 0.49 -.14 .08 0.56

4, 4, 4 pl 0.93 1.00 1.37
02 .18 1.99 .13 1.45 .00 2.06
o -.21 .16 0.65 1	 -.21 .13 0.52

5.2.5 01 0.96 1.01 1.37
p2 .14 1.44 .13 1.17 .00 1.64
a 1 -.18 .14 0.68 -.20 .12 0.59

1 1 20,1 pl 0.47 0.52 0.74

02 .32 10.19 .04 6.18 .00 8.23
o -.12 -.11 0.33 -.12 .02 0.29

7,8,7 p l 0.50 0.55 0.74

0 2 .04 0.77 .06 0.85 .00 1.18
o -.09 .04 0.28 -.10 .03 0.94

10.2,10 pl _ 0.46 0.35 0.74

P2 .09 .67 .G7 0.59 .00 0.62
a. -.07 .12 0.36 -.10 .06 0.32



TABLE IV. - MMULATION RESULTS FOR EXPERIMENT C

(Results are based upon 100 simulations of each cue.)

True paramsters

p . 02 03

o o 1 A 2.000 0.000 •0.100
23 2.000 .050 -.075

c--•-- ---- ----..
D----- --- ----

2 0 2 A 2.000 0.000 -0.100

B .050 -.075

C .100 -.050

D .150 -.025

E 200 .000

a	 4 A 2.000 0.000 -0.100

B .050 -.075

C .100 -.050

D .150 -.025

E .200 .000

a " 8 A 2.000 0.000 -0.100

B .050 -.075

c ..00 -.050

D .150 -.025

Mew of estimates

p l 0 2 03

2.966

1.970
-0.004

.048

-0.099

-.077

0.049

.051

1.991 -0.002 -0.103 0.076

1.962 .050 -.060 .073

1.9% .104 -.049 076
2.024 .278 .023 .080

2.053 .323 .045 .067

:.002 t -0.002 -0.104 0.091
1.995 .049 -.078 .059

1.993 .100 -.051 .089

2.008 .174 -.017 .090

2.024 .253 .018 .089

2.004 0.001 -0.103 0.095
2.002 .050 -.076 .09S

2.002 .101 -.052 .095

1.997 .165 -.016 .098



TABLE V. - OBSERVED, ASYUPTOTIC, AND NOR1dAL THEORY COVARIANCES

FOR MPERO ENT C

(a) (a n 1)

(Results based on 100 simulations of each case. ►

model Observed comisooe
KO')

Asynq"tec covartasce
pc103)

Normal theory
covariance (403)

A	 p1 4.0 7.96 7.99

0
3 .00 1.91 -.06 0.96 0	 1.64

p3 -3.09 .10	 1.09 -2.31 .03	 0.96 -2.36	 0	 1.16
e -.77 .00	 .ib	 1.12 .74 .00	 -.46	 1.66

B	 pl 7.09 7.96

0
3 .10 1.76 .09 1.02

pd -2.33 -.02	 1.23 -2.33 -.01	 0.99

e .^	 .00	 1.07 .66 .07	 -.39	 1.69

II
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TABLE V. - Continued.

(b) (a a 2)

Model Observed covariance Asymptotic covariance Normal theory

0(103) (x103) covariance (x103)

A pl 5.38 3.99 4.00

P2 .00 0.82 .01 .56 .00	 0.82
P 3 -1.32 -.03 0.44 -1.14 .02 0.48 -1.18	 .00	 0.59

o .28 .03 -.09 0.68 .12 .09 -.10 0.77

B p 1 4.03 4.05

p- -.19 0.87 .06 0.59

P; -1.05 .09 0.52 -1.16 -.01 0.50

o -.17 .12 -.04 0.68 .19 .00 -.11 0.88

C p 1 5.89 4.21

P 2 2.18 4.85 .14 0.77

0 3 -.57 1.61 1.12 -1.18 .08 0.54

o .00 .31 .20 0.82 .10 .31 .20 0.82

D pl 27.59 5.01

P2 37.56 75.57 .37 2.06

P 3 11.39 27.70 11.35 -1.35 .66 0.95

o -.19 .03 .02. 0.95 .31 .36 .05 0.91

E pl 29.96 4.95

P2 40.38 74.35 1.58 7.97

0 3 12.86 27.70 11.25 -.69 3.39 2.13

a 1.25 1.52 .50 0.70 .38 1.34 .45 1.33

i

i

L

I
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TABLE V. - ContWusd.

(c) (004)

Model Observed covariance Asymptotic covariance Normal theory

OdO0 (x103) covariance (403)

A Sl 2.94 1.94 2.00

02 .15 0.35 .02 0.28 .00	 0.41

P3 -.59 -.04 0.26 -.55 .00	 0.24 -.59	 .00	 0.29

IF .01 -.01 -.01 0.35 .02 .03	 -.04 0.38

B p1 2.25 2.14

P2 .01 0.31 .04 0.30

P3 -.59 .04 0.25 -.61 -.01	 0.26

o 1	 -.08 .04 .00 0.48 .09 .01	 -.05 0.40

C P 1 2.28 2.30

P2 -.09 0.51 .10 0.42

p 3 -.65 .14 0.91 -.65 .04	 0.30

v -.16 .15 .06 0.37 .12 .09	 -.Oa 0.49

D P 1 5.90 2.37

P2 4.46 9.10 .23 1.25

P3 .60 3.15 1.46 -.61 .43	 0.49

a .37 4.27 .06 0.51 .08 .33	 .09 0.55

E p1 12.66 2.60

P2 15.06 27.52 .90 4.08

P 3 4.38 10.06 4.10 -.34 1.73	 1.10

9 .48 .72 .22 0.53 .13 .61	 .22 0.58

hl
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TABLE V. - Concluded.

(d) (n - 8)

model Observed covariance Asymptotic covariance Normal theory
(x10 (x103) covariance (403)

A ^1 1.20 0.96 1.00

P2 .00 0.15 .00 0.14 .00	 0.20

P3 -.31 .00	 0.13 -.27 .00	 0.12 -.29	 .00	 0.15

v .09 .00	 -.04 0.17 .00 .00	 -.02 0.19

B P1 1.35 1.32

P2 .00 0.14 .02 0.15

P3 -.43 .02	 0.19 -.29 .00	 0.12

v .04 .00	 -.03 0.20 .02 .01	 -.02 0.20

C P I 1.49 1.12

P2 .09 0.22 .04 0.21

B3 -.43 .02	 0.19 -.31 .02	 0.15

v .15 .10	 -.02 0.26 .05 .05	 -.01 0.24

D B1 1.69 1.24

9 2 .27 2.92 .12 0.62

P3 -.39 1.32	 0.84 -.32 .21	 0.24

a 1	 .19 .39	 .07 0.33 .09 .15	 .03 0.27
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